Multiprocessor Global
Scheduling on
Frame-Based DVFS

Systems

Vandy BERTEN

Université Libre de Bruxelles, Belgium
Fonds National de la Recherche Scientifique

ULB

Outline

® Motivations & Context
® Formal Model

® Scheduling Algorithms
® Some Simulations

® Conclusions

Motivations &
Context

Motivations

*Many embedded, multimedia, communication, ... devices
have common characteristics:

® They have real-time constraints = RT Scheduling
® They are battery powered = Energy-efficiency

® Execution lengths are not known in advance —
Stochastic models

® Contain already 2 or 4 CPUs, and very soon several
hundreds — Multiprocessor systems

Motivations (con'’t)

® This talk is about Real-time scheduling
algorithms for Energy-efficient systems
with Stochastic tasks on Multiprocessor
Platforms

® We are interested in a specific task
model: Frame-based systems (all tasks
share the same period/deadline)

@ Examples
4

webcam;

CPUx

CPU> Memo
ry

CPUn

webcamn Video encoder

6

Formal Model

Frame-Based System

® We consider a n tasks {11, T2, ..., Tn}

® Frame-Based: all tasks share the
/period (Ti = Dj = D)

® Every multiple of D, a bunch of n jobs
arrives ...

® .. and should be finished before the next
arrival

® The task order is given (or chosen
beforehand)

8

Stochastic Models

® The execution length of a job is not
known before the end

® We know the execution length
distribution of each task ...

® .. and the Worst Case Execution
number of Cycles (WCECQC) : wi

Energy Efficiency

® DVFS platforms (Dynamic Voltage &
Frequency Scaling) allow to change the
frequency on-the-fly

® DVFS scheduling algorithms aim at
selecting the right frequency in order to:

® meet deadlines

® minimize energy consumption

10

Energy Efficiency
(cont’d)
® We consider models with M frequencies
f1 < ... <fm

® For each frequency, we know the
consumption

® To simplify: changing frequency is “free”

® One frequency per job

11

Scheduling
Algorithms

Single CPU case

® With only one CPU: lots of results
already

® Offline phase: uses length distribution
to “prepare” the scheduling

® Online phase: uses the remaining time

® Scheduling: consists in choosing the
best frequency

13

Single CPU case (contd)

® Offline phase: compute a set
of n functions Si (one for
each task) - can be complex

.. e ® Online phase: when task T
has to start at time t, use
frequency Si(t) - must be
Sl(t). :. P R A S — qUICk

0 t D ® Several very good ways of
computing S-functions are
available

15

Multiprocessor case

® |If several (identical) CPUs are
available: much more complex ...

® Not a lot of results in the literature

® We'd like to take advantage of the good
results we obtained in the single CPU

case

16

Multiprocessor case

(cont’'d)

® When several tasks need to be scheduled on
several CPUs, mainly 2 solutions:

® Partitioning: each task is statically assigned to a
CPU. We then run single CPU methods on each
CPU. Easier, but less efficient

® Global scheduling: tasks can move between
CPUs (but usually jobs cannot). Much more
complex, but often more efficient

® We want to do something in between ...

17

Virtual Static
Partitioning

® Offline phase: virtual static partitioning,
each task is assigned to a CPU

® Online phase: we dynamically update
this partitioning (re-assign tasks having
not started yet), such as most task
could feel as on a single CPU

18

©000cescoscsscsccsccsccscosccscas

0 00c0scssssscsscsssssososssssoss

eeeccsesescessescescsssescsscssescesccssne

0 000scsccsccss

0 00sssccsccsccss

T R R T P R PP P PR TS

0 000scsccsscas

19

® We have to keep the task
order

® Task 1 is then the first to start,
for instance on CPU 1

0 D ® \We want that Task 1 feels as
on a single CPU

Online updating

® What frequency would we choose in
such a case?

® We try to use this frequency

21

Online Updating

® Moving tasks is a complex problem,
especially at high load. Probably close
to bin-backing problem

® |If we accept to change the order:
Static partition found

N

Schedulable (meet all deadlines)

27

Some Simulations

18 video decoding tasks - 4 CPUs

Encrgy ratio with var

] 1] | |

03 04 05060708051

%
>
al
O
4
-
O
V)
AV
)
©
_I
0O
—

18 video decoding tasks - 4 CPUs

Ecneaefit of globalization

] 1] | |

03 04 05060708051

%
>
al
O
4
-
O
V)
AV
)
©
_I
0O
—

100 video decoding tasks - 32 CPUS

%,
D
al
Cm
O ©
™ [
C K
o K
JH :
-
Y
_I
-
-
—

Conclusions

® We have extended a uniprocessor
algorithm to a multiprocessor one,
keeping real-time constraint guarantees

® When the task order is efficient, global
scheduling helps to save energy

® Scheduler rather simple, fast online
phase

® ECRTSI10 is the next place to submit!

32

33

Questions?

