
1

Multiprocessor Global
Scheduling on

Frame-Based DVFS
Systems

Vandy BERTEN

Université Libre de Bruxelles, Belgium
Fonds National de la Recherche Scientifique

2

Outline

• Motivations & Context

• Formal Model

• Scheduling Algorithms

• Some Simulations

• Conclusions

3

Motivations &
Context

4

Motivations

•Many embedded, multimedia, communication, ... devices
have common characteristics:

• They have real-time constraints ➞ RT Scheduling

• They are battery powered ➞ Energy-efficiency

• Execution lengths are not known in advance ➞
Stochastic models

• Contain already 2 or 4 CPUs, and very soon several
hundreds ➞ Multiprocessor systems

5

Motivations (con’t)

• This talk is about Real-time scheduling
algorithms for Energy-efficient systems
with Stochastic tasks on Multiprocessor
Platforms

• We are interested in a specific task
model: Frame-based systems (all tasks
share the same period/deadline)

6

Examples

CPU1CPUCPU11

CPU2CPUCPU22

CPUmCPUCPUmm

Video encoder

...

webcam1

webcam2

webcamn

...

...
Memo

ry
MemoMemo

ryry

7

Formal Model

8

Frame-Based System
• We consider a n tasks {τ1, τ2, ..., τn}

• Frame-Based: all tasks share the same
deadline/period (Ti = Di = D)

• Every multiple of D, a bunch of n jobs
arrives ...

• ... and should be finished before the next
arrival

• The task order is given (or chosen
beforehand)

9

Stochastic Models

• The execution length of a job is not
known before the end

• We know the execution length
distribution of each task ...

• ... and the Worst Case Execution
number of Cycles (WCEC) : wi

10

Energy Efficiency

• DVFS platforms (Dynamic Voltage &
Frequency Scaling) allow to change the
frequency on-the-fly

• DVFS scheduling algorithms aim at
selecting the right frequency in order to:

• meet deadlines

• minimize energy consumption

11

Energy Efficiency
(cont’d)

• We consider models with M frequencies
f1 < ... < fM

• For each frequency, we know the
consumption

• To simplify: changing frequency is “free”

• One frequency per job

12

Scheduling
Algorithms

13

Single CPU case

• With only one CPU: lots of results
already

• Offline phase: uses length distribution
to “prepare” the scheduling

• Online phase: uses the remaining time

• Scheduling: consists in choosing the
best frequency

14

τ1ττ11

0 D

f1

f2
f3

τ5ττ55τ4ττ44τ3ττ33τ2ττ22τ1ττ11

?
τ1ττ11

τ1ττ11
τ1ττ11τ1ττ11

τ2ττ22τ2ττ22

τ3ττ33
τ1ττ11τ1ττ11

15

Single CPU case (cont’d)

• Offline phase: compute a set
of n functions Si (one for
each task) - can be complex

• Online phase: when task ττii

has to start at time t, use
frequency Si(t) - must be
quick

• Several very good ways of
computing S-functions are
available

0 Dt

Si(t)

16

Multiprocessor case

• If several (identical) CPUs are
available: much more complex ...

• Not a lot of results in the literature

• We’d like to take advantage of the good
results we obtained in the single CPU
case

17

Multiprocessor case
(cont’d)

• When several tasks need to be scheduled on
several CPUs, mainly 2 solutions:

• Partitioning: each task is statically assigned to a
CPU. We then run single CPU methods on each
CPU. Easier, but less efficient

• Global scheduling: tasks can move between
CPUs (but usually jobs cannot). Much more
complex, but often more efficient

• We want to do something in between ...

18

Virtual Static
Partitioning

• Offline phase: virtual static partitioning,
each task is assigned to a CPU

• Online phase: we dynamically update
this partitioning (re-assign tasks having
not started yet), such as most task
could feel as on a single CPU

19

0 D

0 D

0 D

555 666333222 888111 444 777 101010999 111111 121212

20

0 D

0 D

0 D

121212

111111

555 666 333

222 888 111 444

777 101010 999

• We have to keep the task
order

• Task 1 is then the first to start,
for instance on CPU 1

• We want that Task 1 feels as
on a single CPU

21

Online updating

• What frequency would we choose in
such a case?

• We try to use this frequency

0 D 2D

222

3D

555 666333 888444 777 101010999 111111 121212
111

111
?

22

0 D

0 D

t=0 D

111111

121212555 666

222 888 111 444

777 101010 999

333

222

333

111

23

0 D

0 D

0 D

111111

121212555 666

444

101010

999

222

333

111

t

888777

444
444

333

0 D 2D 3D

555 666 888444 777 101010999 111111 121212
111 222 333

0 D 2D 3D

555 666 888777 101010999 111111 121212
111 222 333 444

24

0 D

0 D

0 D

111111

121212

101010

222

111

t

444

333

555
777

666

888

999

25

0 D

0 D

0 D

111111

121212101010

222

111

t

444

333

555

666

888

999
777

26

0 D

0 D

0 D

111111

121212

101010

222

111

t

444

333

555

666

888

999999
777

27

Online Updating

• Moving tasks is a complex problem,
especially at high load. Probably close
to bin-backing problem

• If we accept to change the order:
Static partition found

⇒
Schedulable (meet all deadlines)

⇐

28

Some Simulations

29

18 Tasks on 4 CPUs

29

30

18 Tasks on 4 CPUs

30

31

100 Tasks on 32 CPUs

31

32

Conclusions
• We have extended a uniprocessor

algorithm to a multiprocessor one,
keeping real-time constraint guarantees

• When the task order is efficient, global
scheduling helps to save energy

• Scheduler rather simple, fast online
phase

• ECRTS10 is the next place to submit!

33

Questions?

