

Real-Time Scheduling for Control Systems

Enrico Bini ReTiS Lab, Scuola Superiore Sant'Anna Pisa, Italy

RTNS09, Paris, France, 26-27 October 2009

A

Aim of this talk

- to provide on overview of real-time and control
- to stimulate new ideas in the audience
- to have at least one who does not fall alseep

Overview

Part I
Analysis and Design of Real-Time
SystemsPart II
Issues in Control SystemsPart III

Ideas for the Future

Part I Analysis and Design of Real-Time Systems Part II Issues in Control Systems Part III

Ideas for the Future

The job of the real-time researcher

until the application performs well

Real-Time parameters are cathegorized in designer unmodifiable (**parameters**)

- activation from an external interrupt
- computation times (C_i) of stand alone code
 designer modifiable (variables)
- priority of tasks
- deadlines (D_i)
- periods (T_i) in timer driven tasks

Requires all variables to be set in advance

- application developer must set all variables (priorities, deadlines,...) in advance
- real-time analyst can apply the preferred schedulability analysis

A

Sensitivity Analysis

Sensitivity Analysis

Requires only parameters to be set in advance

- application developer must set an initial guess of all variables
- real-time analyst responds with the range of admissible variation of the variables

Optimal Design

- application developer provides the cost (utility) function
- real-time analyst formulates the schedulability constraints for the given computing resources
- 3. an automated tool returns the best settings for the variables

[Baruah, Burns @ RTSS06] A schedulability test is **sustainable** if any system deemed schedulable by the test remains schedulable when it has "looser constraints".

Looser constraints: smaller computation times, longer period, longer deadline, smaller jitter, faster processor

NO

 x_1

Sensitivity and sustainability

Optimal design and convexity

Uniprocessor scheduling algorithms are all sustainable. What about convexity?

	when C_i	variables $\begin{bmatrix} T_i \end{bmatrix}$	are D_i
utilization-based tests $(D_i = T_i)$			
exact DM			FP trivial DM ??
exact EDF $(D_i \neq T_i)$			

References

Schedulability analysis

[Liu, Layland, 1973] First utilization based schedulability test [everybody, everytime] Extensions to task models, scheduling algorithm, computing platform,...

Sensitivity analysis

[Vestal 1994] FP, comp times

[Punnekkat, Davis, Burns, 1997] FP, binary search [Bini, Di Natale, Buttazzo, 2006] FP, comp times, periods [Racu, Hamann, Ernst, 2006] FP, distributed task set [Hoang, Buttazzo, 2006] EDF, deadlines [Balbastre, Ripoll, Crespo, 2009] EDF, periods, deadlines [George, Hermant, 2009] EDF, comp times

References

Optimal design

[Seto et al, 1996] optimal periods on utilization bound [Aydin et al, 2001, "reward-based"] optimal comp times [Bini, Di Natale, 2005] optimal periods on exact FP [Wu, Bini, Buttazzo, 2008] EDF subopt convex deadlines **Sustainability/Convexity**

[Baruah, Burns, 2006] def. sustainable analysis [Hermant, George, 2009] convexity of EDF C-space

Part I Analysis and Design of Real-Time Systems

Part II Issues in Control Systems

Part III Ideas for the Future

Optimal design in control systems

Control systems are well suited for the optimal design:

- •very stable computation time
 - often controllers are just a multiplication by a matrix (no if statement)
- the cost can be measured quantitatively
 - as function of the state and the input

Introduction on control systems

5

- state of the plant x must reach stability (x=0)
- input to the plant *u*
- system dynamics differential equation

$$\begin{cases} \dot{x} = f(u, x) \\ x(0) = x_0 \end{cases}$$

The inverted pendulum

A classic expression of the cost is: $J = \int_{0}^{\infty} q \|x(t)\|^{2} + \|u(t)\|^{2} dt$ Remember: stability $\Rightarrow \lim_{t \to \infty} x(t) = 0$ q weights the relative importance of the state x over the input u:

- large q means we target fast convergence (of x)
- small q means we target little control action u

depending on:

- the weight q of the state x w.r.t. the input u
- the system dynamics f

Period assignment

The period (T) should as short as possible However:

- n independent controllers with different periods $(T_1,...,T_n)$
- the controllers run on the same CPU
- classic goal: minimize $\sum_{i=1}^{n} w_i T_i$

Scheduling models for digital control systems

- A task schedule is not the only period...
- 2. sampling and actuation are separated by a constant delay (variables: period T_i , delay Δ_i) $\Delta_i \downarrow \uparrow \qquad \downarrow \uparrow \qquad \downarrow \uparrow \qquad \downarrow \uparrow \qquad \downarrow \uparrow$
- 3. actuations occur periodically with a jitter (variables: period T_i , delay Δ_i , jitter J_i)

Until now task activations are the variables However the task may be activated based on state-related event

Designer variables:no, period, deadlinesyes, event rule

References

[Diduch, Doraiswami, 1987] cost function from sampling period

[Seto et al, 1996] optimal periods, linear/exponential cost [Cervin et al., 2004 "jitter margin"] amount of admissible output jitter

[Bini, Cervin, 2008] opt solution, linear cost (period, delay)[Velasco, Martí][Anta, Tabuada][Wang, Lemmon] sched analysis of event-driven control tasks

Part I Analysis and Design of Real-Time Systems Part II Issues in Control Systems

Part III Ideas for the Future

A

The press-one-button machine

What do you mean by "best"?

I want the best embedded system

The one that maximise ...

What are your constraints?

50 Euro

The press-one-button machine

- 1. silicon
- 2. good theory

What do you mean by "best"?

What are your constraints?

I want the best embedded system

The one that maximise ...

50 Euro

